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A simple and efficient method of computing the stress-strain state of layered orthotropic cylindrical 

shells based on the known analytic solution is proposed. Functional normalization of the fundamental 

system of solutions of ordinary differential equations removes the difficulties due to the presence of 

rapidly growing and rapidly decaying solutions and makes it possible to compute shells of arbitrary 

length and thickness. 

Using the equilibrium equations, the deformation relations [l], and the elasticity relations for a 
layered orthotropic material [Z], we obtain the following system of equilibrium equations in 
terms of displacements 

JU = R’h-‘q (1) 

where U = (u, u, w)’ is the displacement vector, q = (ql, q2, -q$ is the external load vector, 
the matrix components of J have the form 
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and a = s/R and <p are the dimensionless longitudinal and angular coordinates. 
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On separating the variables with the aid of a Fourier expansion with respect to the angular 
coordinate [l], we obtain a system of ordinary differential equations. We will seek a solution of 
the homogeneous part of this system in the form 

lQ = Ale”, Vt = B,e”, Wk = c,=” (2) 

After this substitution we obtain a system of homogeneous linear algebraic equations for 
A,., Z&, C, for each kth term of the Fourier series. The condition for non-trivial solutions of 
the system to exist (its deter~nant being equal to zero) yields the characteristic equation 
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This eq~tion involves only even powers of the characte~stic ex~nents I to be deter~ned. 
It can therefore be reduced to an equation of the fourth degree, which can be solved by 
Ferrari’s formulae. For each root hi (i=l, . . . , 8) the numbers Ap, @, Cz) can be 
determined apart from a m~tiplier, and the general solution of the homogeneous system of 
equations can be obtained in the form 

(4) 

where Ci are arbitrary integration constants. The cases k = 0 and k = 1 when four of the eight 
roots of (3) are zeros, are the only exceptions. The part of the general solution of the homo- 
geneous system of equations corresponding to these roots is: 

for k=O 

for k=l 
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Once the displacements 
and elasticity relations. 
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are determined, the forces can be computed using the deformation 

Calculations were carried out for loads given by polynomials of a certain degree along the 
cylinder generators. In this case it is convenient to seek a particular solution of the inhomo- 
geneous system of ordinary differential equations for the kth term of the Fourier series by the 
method of undetermined coefficients. 

The numerical experiment revealed some characteristic features of the analytic solution. 
Firstly, for certain values of the generalized stiffness b4 and dg the roots of Eq. (3) are not 

only complex numbers (as in the case of an isotropic body), but also pure real and/or pure 
imaginary. For example, for the sixth and higher terms of the Fourier series with R/h = 100, 
d,, = bI1, fiz = g,, = 0.02, fzL = g, = 0.6, fs3 = g,, = 0.04 (i.e. in the case when the displacement 
stiffness of the material is small compared to the expansion stiffness) each of the eight roots of 
the characteristic equation is a real number. 

Secondly, if the shells under consideration are long, it turns out, as a result of the direct 
application of (4), that the matrix of the system of linear algebraic equations used to determine 
the arbitrary constants from the boundary conditions is ill-posed due to the presence of rapidly 
growing and rapidly decaying functions among the solutions. Existing methods of solving this 
problem (the pivotal-condensation method with orthogonalization and normalization, etc.) 
require very long computations, leading to long computing times and inefficient use of 
computer memory. 

The above-mentioned difficulty is obviously related only to the features of computer use. 
But, as opposed to this, in those cases when the volume of computations admits of computa- 
tion “by hand” the presence of rapidly varying analytic functions simplifies the task because 
the boundary effect turns out to be the stress state characteristic for shells, and the influence of 
the conditions on the shell faces on one another can be neglected. It turned out to be very easy 
to use these ideas in computer calculations. We know [l] that only the decaying solutions 
(which correspond to roots of the form h, = -p + iq, p > 0) play a role on the left-hand face of a 
long shell, while only the increasing ones (which correspond to roots of the form h, = p +iq, 
p > 0) play a role on the right-hand face. From the mathematical point of view this means that 
if the coordinates of the left and right faces of the shell are amin and a,_, the order of 
magnitude of any constant corresponding to the root h, is exp[p(cx_ -a,,)] times smaller 
than that of any constant corresponding to hi. This obviously furnishes the key to solving the 
problem: exp(h,a) must be replaced by exp[h,(a-ati)] in rapidly decaying solutions and by 
exp[&(a- a_)] in rapidly growing ones. 

This substitution (in essence the functional normalization of the fundamental system of 
solutions) corresponds to choosing new arbitrary constants. All of them turn out to be 
approximately of order one, the matrix of the system of linear algebraic equations being well 
posed for an arbitrarily long shell and any kth term of the Fourier series. 

In this way we have found an efficient method of computing orthotropic layered cylindrical 
shells of arbitrary length and thickness. 

As an illustration of the method proposed we present the results of solving the problem of the stress- 
strain state of a layered cylindrical shell supported as a cantilever (R/h = 100, 1 /R = 1) with the free end 
loaded by a radial concentrated force directed towards the axis of the shell. Structures with eight layers 
have been considered, in each of which the reinforcing fibres are placed at a certain angle pi, i = 1, . . . , 8 
(Tornell-300 material, E1 = 142.8x lo9 Pa, E, = 9.13 x lo9 Pa, GIz = x109 Pa, v12 = 0.02, v,, = 0.32[2]). Each 
layer has the same thickness, the laminate being symmetric about the middle surface. The generalized 
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Fig. 1. 

stiffnesses are computed from known formulae [2]. 

Fig. 2. 

Figure 1 shows the results of computing the distribution of the moments Ml and M, along the cylinder 
generatrix (cp = 0) for two different reinforcements 

In the case in question M, has a singularity in the zone in which the concentrated force is applied. 
Therefore, when determining the inner force factors it proves more convenient to consider the load 
distributed over an arc of measure, say, lo, instead of the force. The results are presented in dimensionless 
form (relative to the product of the load intensity and the shell thickness). When the structure changes 
one can observe a substantial change in the distribution of the inner force factors: in the latter case, in 
which the stiffness of the laminate along the circumference decreases, the moment M2 also decreases, 
while Ml increases. 

In the case of long cylinders the proposed method enables one to compare the results obtained from 
the theory of shells and rods. Such an analysis of the reliability of the computational results is practically 
impossible when other methods are used. In Fig. 2 we show a graph of the ratio w of the vertical 
displacement (at the point of application of the force) of an isotropic shell and PZ31(3EJ), which is the 
maximum deflection of a tubular beam supported as a cantilever for 

+o* J =-$(ZR+h)” -(2R-h)4] 

For I> 125R the maximum displacements computed from these two theories differ by less than 5%. 

It follows that the proposed method of functional normalization of the fundamental system 
of solutions of differential equations considerably simplifies the problem of studying the 
stress-strain state of a cylindrical shell for arbitrary values of the geometric parameters. Unlike 
other methods, the resulting form of the analytic solution enables one, even for long and thin 
shells, to reduce the problem to solving systems of equations of the eighth order, which corres- 
ponds to the number of boundary conditions, without any additional techniques. Moreover, 
computer calculations can be performed with guaranteed accuracy. 
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